

HNBR 70 Compound 88625

ERIKS' 88625 is a standard grade hydrogenated nitrile compound with a medium percentage of acrylonitrile and good chemical and mechanical properties. It is a common upgrade for standard grade NBR compounds.

Description

- Chemical composition: Hydrogenated NBR
- Physical form: O-rings, moulded parts
- Colour: Black
- Temperature resistance: -30°C to +150°C

Application

- Hot water
- Refrigerents
- Mineral oils and fuels

Compliances

- ADI
- REACH
- RoHS

Additional information

Ozone resistant

Please consult our <u>Chemical Resistance Guide</u> for more information on this compound.

Table 1: Physical properties

Property	Test standard	Value	Unit
Hardness	ISO 48	70±5	IRHD
Elongation at break	ISO 37	220	%
Tensile strength	ISO 37	19	MPa
Compression set – 24 hours at 150°C Slab	ISO 815	18	%
Low temperature resistance TR10	ISO 2921	-20	°C

Table 2: Ageing properties

Property	Test standard	Value	Unit
Heat ageing – 70 hours at 150°C	ISO 188		
Hardness change		+4	IRHD
Elongation at break change		-16	%
Tensile strength change		-5	%
Immersion in ASTM oil #1 – 70 hours at 150°C	ISO 1817		
Hardness change		+7.5	IRHD
Elongation at break change		-8	%
Tensile strength change		+8	%