

HNBR 90 Compound 88629

ERIKS' 88629 is a standard grade hydrogenated nitrile compound with a medium percentage of acrylonitrile and good chemical and mechanical properties.

Description

Chemical composition: Hydrogenated NBR **Physical form**: O-rings, moulded parts

Colour: Black

Temperature resistance: -30°C to +150°C

Application

- Hot water
- Refrigerents
- Mineral oils and fuels
- High pressure

Compliances

- ADI
- REACH
- RoHS

Additional information

Ozone resistent

Please consult our <u>Chemical Resistance Guide</u> for more information on this compound.

Table 1: Physical properties

Property	Test standard	Value	Unit
Hardness	ASTM D2240	91±5	Shore A
Elongation at break	ASTM D412	160	%
Tensile strength	ASTM D412	23.5	MPa
100% Modulus	ASTM D412	16	MPa
Compression set – 24 hours at 150°C	ASTM D395		
Slab		15.7	%

Table 2: Ageing properties

Property	Test standard	Value	Unit
Heat ageing – 70 hours at 150°C	ASTM D865		
Hardness change		+7	Shore A
Elongation at break change		-20	%
Tensile strength change		+4	%
Immersion in IRM 901 oil – 70 hours at 150°C	ASTM D471		
Hardness change		+6	Shore A
Elongation at break change		-11	%
Tensile strength change		+2	%
Volume change		-3.6	%

M01050000002-en_07.10.2015

Disclaimer: The content of this document has been composed with the utmost care. However, it is possible that certain information changes over time, becomes inaccurate or incomplete. ERIKS does not guarantee that the information provided on this document is up to date, accurate and complete; the information provided is not intended to be advice. ERIKS shall never be liable for damage resulting from the use of the information provided.